Noncommutative uniform algebras
Volume 162 / 2004
Studia Mathematica 162 (2004), 213-218
MSC: Primary 46H15; Secondary 47L55.
DOI: 10.4064/sm162-3-2
Abstract
We show that a real Banach algebra $A$ such that $\Vert a^{2}\Vert =\Vert a\Vert^{2}$ for $a\in A$ is a subalgebra of the algebra $C_{\mathbb{H}}( X) $ of continuous quaternion-valued functions on a compact set $X$.