On diffeomorphisms deleting weak compacta in Banach spaces
Volume 162 / 2004
Studia Mathematica 162 (2004), 229-244
MSC: 46B20, 57R50, 58B99.
DOI: 10.4064/sm162-3-4
Abstract
We prove that if $X$ is an infinite-dimensional Banach space with $C^p$ smooth partitions of unity then $X$ and $X\setminus K$ are $C^p$ diffeomorphic for every weakly compact set $K\subset X$.