A+ CATEGORY SCIENTIFIC UNIT

The Banach–Saks property in rearrangement invariant spaces

Volume 162 / 2004

P. G. Dodds, E. M. Semenov, F. A. Sukochev Studia Mathematica 162 (2004), 263-294 MSC: Primary 46A30; Secondary 46B20, 46B15. DOI: 10.4064/sm162-3-6

Abstract

This paper studies the Banach–Saks property in rearrangement invariant spaces on the positive half-line. A principal result of the paper shows that a separable rearrangement invariant space $E$ with the Fatou property has the Banach–Saks property if and only if $E$ has the Banach–Saks property for disjointly supported sequences. We show further that for Orlicz and Lorentz spaces, the Banach–Saks property is equivalent to separability although the separable parts of some Marcinkiewicz spaces fail the Banach–Saks property.

Authors

  • P. G. DoddsSchool of Informatics and Engineering
    Flinders University
    Bedford Park, SA 5042, Australia
    e-mail
  • E. M. SemenovDepartment of Mathematics
    Voronezh State University
    Universitetskaya pl. 1
    Voronezh, 394693, Russia
    e-mail
  • F. A. SukochevSchool of Informatics and Engineering
    Flinders University
    Bedford Park, SA 5042, Australia
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image