A+ CATEGORY SCIENTIFIC UNIT

On the number of non-isomorphic subspaces of a Banach space

Volume 168 / 2005

Valentin Ferenczi, Christian Rosendal Studia Mathematica 168 (2005), 203-216 MSC: Primary 46B03; Secondary 03A15. DOI: 10.4064/sm168-3-2

Abstract

We study the number of non-isomorphic subspaces of a given Banach space. Our main result is the following. Let $\frak X$ be a Banach space with an unconditional basis $(e_i)_{i \in {\mathbb N}}$; then either there exists a perfect set $ P$ of infinite subsets of ${\mathbb N}$ such that for any two distinct $A,B \in P$, $[e_i]_{i \in A} \ncong [e_i]_{i \in B}$, or for a residual set of infinite subsets $A$ of ${\mathbb N}$, $[e_i]_{i \in A}$ is isomorphic to $\frak X$, and in that case, $\frak X$ is isomorphic to its square, to its hyperplanes, uniformly isomorphic to ${\frak X} \oplus [e_i]_{i \in D}$ for any $D\subset {\mathbb N}$, and isomorphic to a denumerable Schauder decomposition into uniformly isomorphic copies of itself.

Authors

  • Valentin FerencziEquipe d'Analyse
    Université Paris 6
    Couloir 46-0, Boîte 186
    4, place Jussieu
    75252 Paris Cedex 05, France
    e-mail
  • Christian RosendalEquipe d'Analyse
    Université Paris 6
    Couloir 46-0, Boîte 186
    4, place Jussieu
    75252 Paris Cedex 05, France
    and
    Mathematics 253-37
    California Institute of Technology
    Pasadena, CA 91125, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image