A+ CATEGORY SCIENTIFIC UNIT

Multiplying balls in the space of continuous functions on $[0,1]$

Volume 170 / 2005

Marek Balcerzak, Artur Wachowicz, Władysław Wilczyński Studia Mathematica 170 (2005), 203-209 MSC: 46J10, 46B25, 26A15, 54E52. DOI: 10.4064/sm170-2-5

Abstract

Let $C$ denote the Banach space of real-valued continuous functions on $[0,1]$. Let $\Phi\colon C\times C\to C$. If $\Phi\in \{ +,\min ,\max\}$ then $\Phi$ is an open mapping but the multiplication $\Phi =\cdot$ is not open. For an open ball $B(f,r)$ in $C$ let $B^2(f,r)=B(f,r)\cdot B(f,r)$. Then $ f^2\in\mathop{\rm Int} B^2(f,r)$ for all $r>0$ if and only if either $f\ge 0$ on $[0,1]$ or $f\le 0$ on $[0,1]$. Another result states that $\mathop{\rm Int}(B_1\cdot B_2)\neq\emptyset$ for any two balls $B_1$ and $B_2$ in $C$. We also prove that if $\Phi\in\{+,\cdot,\min,\max\}$, then the set $\Phi^{-1}(E)$ is residual whenever $E$ is residual in $C$.

Authors

  • Marek BalcerzakInstitute of Mathematics
    Łódź Technical University
    Wólczańska 215
    93-005 Łódź, Poland
    e-mail
  • Artur WachowiczInstitute of Mathematics
    Łódź Technical University
    Wólczańska 215
    93-005 Łódź, Poland
    e-mail
  • Władysław WilczyńskiFaculty of Mathematics
    University of Łódź
    Banacha 22
    90-238 Łódź, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image