A+ CATEGORY SCIENTIFIC UNIT

On contractive projections in Hardy spaces

Volume 171 / 2005

Florence Lancien, Beata Randrianantoanina, Eric Ricard Studia Mathematica 171 (2005), 93-102 MSC: 46E15, 30D55, 46B20, 46B04. DOI: 10.4064/sm171-1-5

Abstract

We prove a conjecture of Wojtaszczyk that for $1 \leq p<\infty$, $p\neq 2$, $H_p({\mathbb T})$ does not admit any norm one projections with dimension of the range finite and greater than 1. This implies in particular that for $1\leq p<\infty$, $p\ne 2$, $H_p$ does not admit a Schauder basis with constant one.

Authors

  • Florence LancienDépartement de Mathématiques
    Université de Franche-Comté
    16 Route de Gray
    25030 Besançon, France
    e-mail
  • Beata RandrianantoaninaDepartment of Mathematics and Statistics
    Miami University
    Oxford, OH 45056, U.S.A.
    e-mail
  • Eric RicardDépartement de Mathématiques
    Université de Franche-Comté
    16 Route de Gray
    25030 Besançon, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image