A+ CATEGORY SCIENTIFIC UNIT

Extending $n$-convex functions

Volume 171 / 2005

Allan Pinkus, Dan Wulbert Studia Mathematica 171 (2005), 125-152 MSC: Primary 26A51, 41A05. DOI: 10.4064/sm171-2-2

Abstract

We are given data $\alpha _1,\mathinner {\ldotp \ldotp \ldotp },\alpha _m$ and a set of points $E=\{ x_1,\mathinner {\ldotp \ldotp \ldotp },x_m\} $. We address the question of conditions ensuring the existence of a function $f$ satisfying the interpolation conditions $f(x_i)=\alpha _i$, $i=1,\mathinner {\ldotp \ldotp \ldotp },m$, that is also $n$-convex on a set properly containing $E$. We consider both one-point extensions of $E$, and extensions to all of ${{\mathbb R}}$. We also determine bounds on the $n$-convex functions satisfying the above interpolation conditions.

Authors

  • Allan PinkusDepartment of Mathematics
    Technion
    32000 Haifa, Israel
    e-mail
  • Dan WulbertDepartment of Mathematics
    University of California, San Diego (UCSD)
    9500 Gilman Drive
    La Jolla, CA 92093-0112, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image