Stability of infinite ranges and kernels
Volume 174 / 2006
Studia Mathematica 174 (2006), 61-73
MSC: 47A53, 47A56.
DOI: 10.4064/sm174-1-5
Abstract
Let $A(\cdot )$ be a regular function defined on a connected metric space $G$ whose values are mutually commuting essentially Kato operators in a Banach space. Then the spaces $R^\infty (A(z))$ and $\overline {N^\infty (A(z))}$ do not depend on $z\in G$. This generalizes results of B. Aupetit and J. Zemánek.