A+ CATEGORY SCIENTIFIC UNIT

The Bohr inequality for ordinary Dirichlet series

Volume 175 / 2006

R. Balasubramanian, B. Calado, H. Queffélec Studia Mathematica 175 (2006), 285-304 MSC: 30B10, 30B50, 40A05, 42A45, 42B30, 11M41. DOI: 10.4064/sm175-3-7

Abstract

We extend to the setting of Dirichlet series previous results of H. Bohr for Taylor series in one variable, themselves generalized by V. I. Paulsen, G. Popescu and D. Singh or extended to several variables by L. Aizenberg, R. P. Boas and D. Khavinson. We show in particular that, if $f(s) = \sum_{n=1}^{\infty}a_nn^{-s}$ with $\| f \|_{\infty} := \sup_{\Re s > 0} |f(s)| < \infty$, then $\sum_{n=1}^{\infty}|a_n|n^{-2} \leq \| f \|_{\infty}$ and even slightly better, and $\sum_{n=1}^{\infty}|a_n|n^{-1/2} \leq C\| f \|_{\infty}$, $C$ being an absolute constant.

Authors

  • R. BalasubramanianThe Institute of Mathematical Sciences
    Chennai 600 113, India
    e-mail
  • B. CaladoLaboratoire de Mathématiques
    Centre d'Orsay
    Université Paris-Sud XI
    Bâtiment 425
    91405 Orsay, France
    e-mail
  • H. QueffélecUFR de Mathématiques
    Université de Lille 1
    59655 Villeneuve d'Ascq Cedex, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image