A+ CATEGORY SCIENTIFIC UNIT

Rank and the Drazin inverse in Banach algebras

Volume 177 / 2006

R. M. Brits, L. Lindeboom, H. Raubenheimer Studia Mathematica 177 (2006), 211-224 MSC: 46H05, 46H15, 47A99. DOI: 10.4064/sm177-3-2

Abstract

Let $A$ be an arbitrary, unital and semisimple Banach algebra with nonzero socle. We investigate the relationship between the spectral rank (defined by B. Aupetit and H. Mouton) and the Drazin index for elements belonging to the socle of $A$. In particular, we show that the results for the finite-dimensional case can be extended to the (infinite-dimensional) socle of $A$.

Authors

  • R. M. BritsDepartment of Mathematics
    University of Johannesburg
    P.O. Box 524
    Auckland Park 2006, South Africa
    e-mail
  • L. LindeboomDepartment of Mathematics, Applied Mathematics and Astronomy
    University of South Africa
    P.O. Box 392
    UNISA 0003, Pretoria, South Africa
    e-mail
  • H. RaubenheimerDepartment of Mathematics
    University of Johannesburg
    P.O. Box 524
    Auckland Park 2006, South Africa
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image