A+ CATEGORY SCIENTIFIC UNIT

A Banach space dichotomy theorem for quotients of subspaces

Volume 180 / 2007

Valentin Ferenczi Studia Mathematica 180 (2007), 111-131 MSC: 46B03, 03E15. DOI: 10.4064/sm180-2-2

Abstract

A Banach space $X$ with a Schauder basis is defined to have the restricted quotient hereditarily indecomposable property if $X/Y$ is hereditarily indecomposable for any infinite-codimensional subspace $Y$ with a successive finite-dimensional decomposition on the basis of $X$. The following dichotomy theorem is proved: any infinite-dimensional Banach space contains a quotient of a subspace which either has an unconditional basis, or has the restricted quotient hereditarily indecomposable property.

Authors

  • Valentin FerencziInstitut de Mathématiques de Jussieu
    Projet Analyse Fonctionnelle
    Université Pierre et Marie Curie – Paris 6
    Boîte 186, 4, Place Jussieu
    75252 Paris Cedex 05, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image