A+ CATEGORY SCIENTIFIC UNIT

Distances to convex sets

Volume 182 / 2007

Antonio S. Granero, Marcos Sánchez Studia Mathematica 182 (2007), 165-181 MSC: 46B20, 46B26. DOI: 10.4064/sm182-2-5

Abstract

If $X$ is a Banach space and $C$ a convex subset of $X^*$, we investigate whether the distance $\hat d({{\overline {\rm {co}}}}^{w^*}(K),C):=\sup \{\inf\{\|k-c\|:c\in C\}:k\in \overline {\rm {co}} ^{w^*}(K)\}$ from $\overline {\rm {co}} ^{w^*}(K)$ to $C$ is $M$-controlled by the distance $\hat d(K,C)$ (that is, if $\hat d({{\overline {\rm {co}}}}^{w^*}(K),C)\leq M \hat d(K,C)$ for some $1\leq M<\infty $), when $K$ is any weak$^*$-compact subset of $X^*$. We prove, for example, that: (i) $C$ has 3-control if $C$ contains no copy of the basis of $\ell _1( c )$; (ii) $C$ has 1-control when $C\subset Y\subset X^*$ and $Y$ is a subspace with weak$^*$-angelic closed dual unit ball $B(Y^*)$; (iii) if $C$ is a convex subset of $X$ and $X$ is considered canonically embedded into its bidual $X^{**}$, then $C$ has 5-control inside $X^{**}$, in general, and 2-control when $K\cap C$ is weak$^*$-dense in $C$.

Authors

  • Antonio S. GraneroDepartamento de Análisis Matemático
    Facultad de Matemáticas
    Universidad Complutense de Madrid
    28040 Madrid, Spain
    e-mail
  • Marcos SánchezDepartamento de Análisis Matemático
    Facultad de Matemáticas
    Universidad Complutense de Madrid
    28040 Madrid, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image