The Hardy–Lorentz spaces $H^{p,q}({\mathbb R}^n)$
Volume 182 / 2007
Studia Mathematica 182 (2007), 283-294
MSC: 42B20, 42B30, 42B35.
DOI: 10.4064/sm182-3-7
Abstract
We deal with the Hardy–Lorentz spaces $H^{p,q}({\mathbb R}^n)$ where $0< p\le 1$, $0< q\le \infty$. We discuss the atomic decomposition of the elements in these spaces, their interpolation properties, and the behavior of singular integrals and other operators acting on them.