A+ CATEGORY SCIENTIFIC UNIT

A new metric invariant for Banach spaces

Volume 199 / 2010

F. Baudier, N. J. Kalton, G. Lancien Studia Mathematica 199 (2010), 73-94 MSC: Primary 46B20; Secondary 46T99. DOI: 10.4064/sm199-1-5

Abstract

We show that if the Szlenk index of a Banach space $X$ is larger than the first infinite ordinal $\omega $ or if the Szlenk index of its dual is larger than $\omega $, then the tree of all finite sequences of integers equipped with the hyperbolic distance metrically embeds into $X$. We show that the converse is true when $X$ is assumed to be reflexive. As an application, we exhibit new classes of Banach spaces that are stable under coarse-Lipschitz embeddings and therefore under uniform homeomorphisms.

Authors

  • F. BaudierLaboratoire de Mathématiques UMR 6623
    Université de Franche-Comté
    16 route de Gray
    25030 Besançon Cedex, France
    e-mail
  • N. J. KaltonDepartment of Mathematics
    University of Missouri-Columbia
    Columbia, MO 65211, U.S.A.
    e-mail
  • G. LancienLaboratoire de Mathématiques UMR 6623
    Université de Franche-Comté
    16 route de Gray
    25030 Besançon Cedex, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image