A+ CATEGORY SCIENTIFIC UNIT

Homomorphisms on algebras of Lipschitz functions

Volume 199 / 2010

Fernanda Botelho, James Jamison Studia Mathematica 199 (2010), 95-106 MSC: Primary 46H10, 47B48; Secondary 47L10. DOI: 10.4064/sm199-1-6

Abstract

We characterize a class of $*$-homomorphisms on ${\rm Lip}_*(X, \mathcal{B}(\mathcal{H})),$ a non-commutative Banach $*$-algebra of Lipschitz functions on a compact metric space and with values in $\mathcal{B}(\mathcal{H}).$ We show that the zero map is the only multiplicative $\ast $-preserving linear functional on ${\rm Lip}_*(X, \mathcal{B}(\mathcal{H})).$ We also establish the algebraic reflexivity property of a class of $*$-isomorphisms on ${\rm Lip}_*(X, \mathcal{B}(\mathcal{H})).$

Authors

  • Fernanda BotelhoDepartment of Mathematical Sciences
    The University of Memphis
    Memphis, TN 38152, U.S.A.
    e-mail
  • James JamisonDepartment of Mathematical Sciences
    The University of Memphis
    Memphis, TN 38152, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image