A+ CATEGORY SCIENTIFIC UNIT

Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition

Volume 199 / 2010

Ferenc Móricz Studia Mathematica 199 (2010), 199-205 MSC: Primary 42A38; Secondary 26A16. DOI: 10.4064/sm199-2-5

Abstract

We consider complex-valued functions $f\in L^1 (\mathbb R)$, and prove sufficient conditions in terms of $f$ to ensure that the Fourier transform $\hat f$ belongs to one of the Lipschitz classes ${\rm Lip} (\alpha)$ and ${\rm lip} (\alpha)$ for some $0< \alpha\le 1$, or to one of the Zygmund classes $\mathop{\rm zyg} (\alpha)$ and ${\rm zyg}(\alpha)$ for some $0<\alpha\le 2$. These sufficient conditions are best possible in the sense that they are also necessary in the case of real-valued functions $f$ for which either $x f(x) \ge 0$ or $f(x) \ge 0$ almost everywhere.

Authors

  • Ferenc MóriczBolyai Institute University of Szeged
    Aradi vértanúk tere 1
    H-6720 Szeged, Hungary
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image