A+ CATEGORY SCIENTIFIC UNIT

Algebraic genericity of strict-order integrability

Volume 199 / 2010

Luis Bernal-González Studia Mathematica 199 (2010), 279-293 MSC: Primary 28A25; Secondary 28C15, 46E30. DOI: 10.4064/sm199-3-5

Abstract

We provide sharp conditions on a measure $\mu$ defined on a measurable space $X$ guaranteeing that the family of functions in the Lebesgue space $L^p(\mu ,X)$ $(p \ge 1)$ which are not $q$-integrable for any $q > p$ (or any $q < p$) contains large subspaces of $L^p(\mu ,X)$ (without zero). This improves recent results due to Aron, García, Muñoz, Palmberg, Pérez, Puglisi and Seoane. It is also shown that many non-$q$-integrable functions can even be obtained on any nonempty open subset of $X$, assuming that $X$ is a topological space and $\mu$ is a Borel measure on $X$ with appropriate properties.

Authors

  • Luis Bernal-GonzálezFacultad de Matemáticas
    Universidad de Sevilla
    41080 Sevilla, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image