Sobolev–Besov spaces of measurable functions
Volume 201 / 2010
Studia Mathematica 201 (2010), 69-86
MSC: Primary 46E35.
DOI: 10.4064/sm201-1-6
Abstract
The paper deals with spaces ${\bf L}^s_p ({\mathbb R}^n)$ of Sobolev type where $s>0$, $0< p \le \infty$, and their relations to corresponding spaces ${\bf B}^s_{p,q} ({\mathbb R}^n)$ of Besov type where $s>0$, $0< p \le \infty$, $0< q \le \infty$, in terms of embedding and real interpolation.