Commutators on
Volume 206 / 2011
Studia Mathematica 206 (2011), 175-190
MSC: Primary 47B47; Secondary 46B20.
DOI: 10.4064/sm206-2-5
Abstract
Let T be a bounded linear operator on X=(\sum \ell_{q})_{{p}} with 1\le q < \infty and 1< p< \infty. Then T is a commutator if and only if for all non-zero \lambda\in \mathbb{C}, the operator T-\lambda I is not X-strictly singular.