A+ CATEGORY SCIENTIFIC UNIT

A “hidden” characterization of approximatively polyhedral convex sets in Banach spaces

Volume 210 / 2012

Taras Banakh, Ivan Hetman Studia Mathematica 210 (2012), 137-157 MSC: Primary 52A07, 52A27; Secondary 46A55; 46N10, 52B05, 52A37. DOI: 10.4064/sm210-2-3

Abstract

A closed convex subset $C$ of a Banach space $X$ is called approximatively polyhedral if for each $\varepsilon>0$ there is a polyhedral ($=$ intersection of finitely many closed half-spaces) convex set $P\subset X$ at Hausdorff distance $< \varepsilon$ from $C$. We characterize approximatively polyhedral convex sets in Banach spaces and apply the characterization to show that a connected component $\mathcal H$ of the space ${\rm Conv}_{\mathsf H}(X)$ of closed convex subsets of $X$ endowed with the Hausdorff metric is separable if and only if $\mathcal H$ contains a polyhedral convex set.

Authors

  • Taras BanakhIvan Franko National University of Lviv
    Lviv, Ukraine
    and
    Uniwersytet Jana Kochanowskiego
    Kielce, Poland
    e-mail
  • Ivan HetmanIvan Franko National University of Lviv
    Lviv, Ukraine
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image