A+ CATEGORY SCIENTIFIC UNIT

Shift-modulation invariant spaces on LCA groups

Volume 211 / 2012

Carlos Cabrelli, Victoria Paternostro Studia Mathematica 211 (2012), 1-19 MSC: Primary 43A77; Secondary 43A15. DOI: 10.4064/sm211-1-1

Abstract

A $(K,\varLambda )$ shift-modulation invariant space is a subspace of $L^2(G)$ that is invariant under translations along elements in $K$ and modulations by elements in $\varLambda $. Here $G$ is a locally compact abelian group, and $K$ and $\varLambda $ are closed subgroups of $G$ and the dual group $\hat G$, respectively.

We provide a characterization of shift-modulation invariant spaces when $K$ and $\varLambda $ are uniform lattices. This extends previous results known for $L^2(\mathbb R^d)$. We develop fiberization techniques and suitable range functions adapted to LCA groups needed to provide the desired characterization.

Authors

  • Carlos CabrelliDepartamento de Matemática
    Facultad de Ciencias Exactas y Naturales
    Universidad de Buenos Aires
    Ciudad Universitaria, Pabellón I
    1428 Buenos Aires, Argentina
    and
    IMAS-CONICET
    Consejo Nacional de Investigaciones Científicas y Técnicas
    Argentina
    e-mail
  • Victoria PaternostroDepartamento de Matemática
    Facultad de Ciencias Exactas y Naturales
    Universidad de Buenos Aires
    Ciudad Universitaria, Pabellón I
    1428 Buenos Aires, Argentina
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image