A+ CATEGORY SCIENTIFIC UNIT

Weighted bounds for variational Fourier series

Volume 211 / 2012

Yen Do, Michael Lacey Studia Mathematica 211 (2012), 153-190 MSC: Primary 42B20; Secondary 42B25, 42B35. DOI: 10.4064/sm211-2-4

Abstract

For $1< p< \infty $ and for weight $w$ in $A_p$, we show that the $r$-variation of the Fourier sums of any function $f$ in $L^p(w)$ is finite a.e. for $r$ larger than a finite constant depending on $w$ and $p$. The fact that the variation exponent depends on $w$ is necessary. This strengthens previous work of Hunt–Young and is a weighted extension of a variational Carleson theorem of Oberlin–Seeger–Tao–Thiele–Wright. The proof uses weighted adaptation of phase plane analysis and a weighted extension of a variational inequality of Lépingle.

Authors

  • Yen DoDepartment of Mathematics
    Yale University
    New Haven, CT 06511, U.S.A.
    e-mail
  • Michael LaceySchool of Mathematics
    Georgia Institute of Technology
    Atlanta, GA 30332, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image