A+ CATEGORY SCIENTIFIC UNIT

An approximation property with respect to an operator ideal

Volume 214 / 2013

Juan Manuel Delgado, Cándido Piñeiro Studia Mathematica 214 (2013), 67-75 MSC: Primary 46B28; Secondary 47L20, 46B50. DOI: 10.4064/sm214-1-4

Abstract

Given an operator ideal ${\mathcal A}$, we say that a Banach space $X$ has the approximation property with respect to ${\mathcal A}$ if $T$ belongs to $\overline {\{S\circ T: S\in {\mathcal F}(X)\}}^{\tau _c}$ for every Banach space $Y$ and every $T\in {\mathcal A}(Y,X)$, $\tau _c$ being the topology of uniform convergence on compact sets. We present several characterizations of this type of approximation property. It is shown that some of the existing approximation properties in the literature may be included in this setting.

Authors

  • Juan Manuel DelgadoDepartamento de Matemática Aplicada I
    Escuela Técnica Superior de Arquitectura
    Avenida Reina Mercedes, 2
    41012 Sevilla, Spain
    e-mail
  • Cándido PiñeiroDepartamento de Matemáticas
    Facultad de Ciencias Experimentales
    Campus Universitario del Carmen
    21071 Huelva, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image