Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Multiplicative maps that are close to an automorphism on algebras of linear transformations

Volume 214 / 2013

L. W. Marcoux, H. Radjavi, A. R. Sourour Studia Mathematica 214 (2013), 279-296 MSC: 15A04, 15A24, 15A30, 47A30, 47B49. DOI: 10.4064/sm214-3-6

Abstract

Let be a complex, separable Hilbert space of finite or infinite dimension, and let \mathcal B(\mathcal H) be the algebra of all bounded operators on {\mathcal H}. It is shown that if \varphi:\mathcal B(\mathcal H) \to \mathcal B(\mathcal H) is a multiplicative map (not assumed linear) and if \varphi is sufficiently close to a linear automorphism of \mathcal B(\mathcal H) in some uniform sense, then it is actually an automorphism; as such, there is an invertible operator S in \mathcal B(\mathcal H) such that \varphi(A) = S^{-1} AS for all A in \mathcal B(\mathcal H). When {\mathcal H} is finite-dimensional, similar results are obtained with the mere assumption that there exists a linear functional f on \mathcal B(\mathcal H) so that f\circ \varphi is close to f \circ \mu for some automorphism \mu of \mathcal B(\mathcal H).

Authors

  • L. W. MarcouxDepartment of Pure Mathematics
    University of Waterloo
    Waterloo, Ontario, Canada N2L 3G1
    e-mail
  • H. RadjaviDepartment of Pure Mathematics
    University of Waterloo
    Waterloo, Ontario, Canada N2L 3G1
    e-mail
  • A. R. SourourDepartment of Mathematics and Statistics
    University of Victoria
    Victoria, BC, Canada V8W 3P4
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image