$L^p$ spectral multipliers on the free group $N_{3,2}$
Volume 217 / 2013
Studia Mathematica 217 (2013), 41-55
MSC: Primary 43A22; Secondary 42B15.
DOI: 10.4064/sm217-1-3
Abstract
Let $L$ be a homogeneous sublaplacian on the $6$-dimensional free $2$-step nilpotent Lie group $N_{3,2}$ on three generators. We prove a theorem of Mikhlin–Hörmander type for the functional calculus of $L$, where the order of differentiability $s > 6/2$ is required on the multiplier.