Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

The space of multipliers and convolutors of Orlicz spaces on a locally compact group

Volume 219 / 2013

Hasan P. Aghababa, Ibrahim Akbarbaglu, Saeid Maghsoudi Studia Mathematica 219 (2013), 19-34 MSC: Primary 43A15, 43A22; Secondary 46E30, 47L10. DOI: 10.4064/sm219-1-2

Abstract

Let be a locally compact group, let (\varphi , \psi ) be a complementary pair of Young functions, and let L^\varphi (G) and L^\psi (G) be the corresponding Orlicz spaces. Under some conditions on \varphi , we will show that for a Banach L^\varphi (G)-submodule X of L^\psi (G), the multiplier space \mathop {\rm Hom}_{L^\varphi (G)}(L^\varphi (G),X^*) is a dual Banach space with predual L^\varphi (G)\bullet X :=\overline {{\rm span}}\{ ux: u\in L^\varphi (G), x\in X \}, where the closure is taken in the dual space of \mathop {\rm Hom}_{L^\varphi (G)}(L^\varphi (G),X^*). We also prove that if \varphi is a \Delta _2-regular N-function, then \mathop {\rm Cv}_{{\varphi }}(G), the space of convolutors of M^\varphi (G), is identified with the dual of a Banach algebra of functions on G under pointwise multiplication.

Authors

  • Hasan P. AghababaDepartment of Mathematics
    University of Tabriz
    Tabriz, Iran
    e-mail
  • Ibrahim AkbarbagluDepartment of Mathematics
    University of Zanjan
    Zanjan 45195-313, Iran
    e-mail
  • Saeid MaghsoudiDepartment of Mathematics
    University of Zanjan, Zanjan 45195-313, Iran
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image