Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Large structures made of nowhere functions

Volume 221 / 2014

Szymon Głąb, Pedro L. Kaufmann, Leonardo Pellegrini Studia Mathematica 221 (2014), 13-34 MSC: Primary 46E30; Secondary 15A03. DOI: 10.4064/sm221-1-2

Abstract

We say that a real-valued function f defined on a positive Borel measure space (X,\mu ) is nowhere q-integrable if, for each nonvoid open subset U of X, the restriction f|_U is not in L^q(U). When (X,\mu ) has some natural properties, we show that certain sets of functions defined in X which are p-integrable for some p's but nowhere q-integrable for some other q's (0< p,q< \infty ) admit a variety of large linear and algebraic structures within them. The presented results answer a question of Bernal-González, improve and complement recent spaceability and algebrability results of several authors and motivate new research directions in the field of spaceability.

Authors

  • Szymon GłąbInstitute of Mathematics
    Technical University of Łódź
    Wólczańska 215
    93-005 Łódź, Poland
    e-mail
  • Pedro L. KaufmannCAPES Foundation
    Ministry of Education of Brazil
    Brasília/DF 70040-020, Brazil
    and
    Institute de Mathématiques de Jussieu
    Université Pierre et Marie Curie
    4 Place Jussieu
    75005 Paris, France
    e-mail
  • Leonardo PellegriniInstituto de Matemática e Estatística
    Universidade de São Paulo
    Rua do Matão, 1010
    CEP 05508-900, São Paulo, Brazil
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image