A+ CATEGORY SCIENTIFIC UNIT

The Daugavet property and translation-invariant subspaces

Volume 221 / 2014

Simon Lücking Studia Mathematica 221 (2014), 269-291 MSC: Primary 46B04; Secondary 43A46. DOI: 10.4064/sm221-3-5

Abstract

Let $G$ be an infinite, compact abelian group and let $\varLambda $ be a subset of its dual group $\varGamma $. We study the question which spaces of the form $C_\varLambda (G)$ or $L^1_\varLambda (G)$ and which quotients of the form $C(G)/C_\varLambda (G)$ or $L^1(G)/L^1_\varLambda (G)$ have the Daugavet property.

We show that $C_\varLambda (G)$ is a rich subspace of $C(G)$ if and only if $\varGamma \setminus \varLambda ^{-1}$ is a semi-Riesz set. If $L^1_\varLambda (G)$ is a rich subspace of $L^1(G)$, then $C_\varLambda (G)$ is a rich subspace of $C(G)$ as well. Concerning quotients, we prove that $C(G)/C_\varLambda (G)$ has the Daugavet property if $\varLambda $ is a Rosenthal set, and that $L^1_\varLambda (G)$ is a poor subspace of $L^1(G)$ if $\varLambda $ is a nicely placed Riesz set.

Authors

  • Simon LückingDepartment of Mathematics
    Freie Universität Berlin
    Arnimallee 6
    14195 Berlin, Germany
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image