A lower bound in the law of the iterated logarithm for general lacunary series
Volume 222 / 2014
Studia Mathematica 222 (2014), 207-228
MSC: Primary 42A55; Secondary 60F15.
DOI: 10.4064/sm222-3-2
Abstract
We prove a lower bound in a law of the iterated logarithm for sums of the form $\sum _{k=1}^N a_k f(n_k x+c_k)$ where $f$ satisfies certain conditions and the $n_k$ satisfy the Hadamard gap condition $n_{k+1}/n_k\geq q >1. $