A+ CATEGORY SCIENTIFIC UNIT

Embeddings of Besov spaces of logarithmic smoothness

Volume 223 / 2014

Fernando Cobos, Óscar Domínguez Studia Mathematica 223 (2014), 193-204 MSC: Primary 46E35; Secondary 41A65. DOI: 10.4064/sm223-3-1

Abstract

This paper deals with Besov spaces of logarithmic smoothness $B_{p,r}^{0,b}$ formed by periodic functions. We study embeddings of $B_{p,r}^{0,b}$ into Lorentz–Zygmund spaces $L_{p,q}(\log L)_{\beta }$. Our techniques rely on the approximation structure of $B_{p,r}^{0,b}$, Nikol'skiĭ type inequalities, extrapolation properties of $L_{p,q}(\log L)_{\beta }$ and interpolation.

Authors

  • Fernando CobosDepartamento de Análisis Matemático
    Facultad de Matemáticas
    Universidad Complutense de Madrid
    Plaza de Ciencias 3
    28040 Madrid, Spain
    e-mail
  • Óscar DomínguezDepartamento de Análisis Matemático
    Facultad de Matemáticas
    Universidad Complutense de Madrid
    Plaza de Ciencias 3
    28040 Madrid, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image