A+ CATEGORY SCIENTIFIC UNIT

Proper subspaces and compatibility

Volume 231 / 2015

Esteban Andruchow, Eduardo Chiumiento, María Eugenia Di Iorio y Lucero Studia Mathematica 231 (2015), 195-218 MSC: Primary 46B20; Secondary 47A05, 47A30. DOI: 10.4064/sm8225-2-2016 Published online: 29 February 2016

Abstract

Let $\mathcal {E}$ be a Banach space contained in a Hilbert space $\mathcal {L}$. Assume that the inclusion is continuous with dense range. Following the terminology of Gohberg and Zambickiĭ, we say that a bounded operator on $\mathcal {E}$ is a proper operator if it admits an adjoint with respect to the inner product of $\mathcal {L}$. A proper operator which is self-adjoint with respect to the inner product of $\mathcal {L}$ is called symmetrizable. By a proper subspace $\mathcal {S}$ we mean a closed subspace of $\mathcal {E}$ which is the range of a proper projection. Furthermore, if there exists a symmetrizable projection onto $\mathcal {S}$, then $\mathcal {S}$ belongs to a well-known class of subspaces called compatible subspaces. We find equivalent conditions to describe proper subspaces. Then we prove a necessary and sufficient condition for a proper subspace to be compatible. The existence of non-compatible proper subspaces is related to spectral properties of symmetrizable operators. Each proper subspace $\mathcal {S}$ has a supplement $\mathcal {T}$ which is also a proper subspace. We give a characterization of the compatibility of both subspaces $\mathcal {S}$ and $\mathcal {T}$. Several examples are provided that illustrate different situations between proper and compatible subspaces.

Authors

  • Esteban AndruchowInstituto de Ciencias
    Universidad Nacional de Gral. Sarmiento
    J.M. Gutierrez 1150
    1613 Los Polvorines, Argentina
    and
    Instituto Argentino de Matemática
    ‘Alberto P. Calderón’
    CONICET
    Saavedra 15, 3er. piso
    1083 Buenos Aires, Argentina
    e-mail
  • Eduardo ChiumientoDepartamento de Matemática, FCE-UNLP
    Calles 50 y 115
    1900 La Plata, Argentina
    and
    Instituto Argentino de Matemática
    ‘Alberto P. Calderón’
    CONICET
    Saavedra 15, 3er. piso
    1083 Buenos Aires, Argentina
    e-mail
  • María Eugenia Di Iorio y LuceroInstituto de Ciencias
    Universidad Nacional de Gral. Sarmiento
    J.M. Gutierrez 1150
    1613 Los Polvorines, Argentina
    and
    Instituto Argentino de Matemática
    ‘Alberto P. Calderón’
    CONICET
    Saavedra 15, 3er. piso
    1083 Buenos Aires, Argentina
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image