Weighted embedding theorems for radial Besov and Triebel–Lizorkin spaces
Volume 233 / 2016
Studia Mathematica 233 (2016), 47-65
MSC: 46E35, 42C40.
DOI: 10.4064/sm8383-4-2016
Published online: 9 May 2016
Abstract
We study the continuity and compactness of embeddings for radial Besov and Triebel–Lizorkin spaces with weights in the Muckenhoupt class $A_\infty $. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation.