A+ CATEGORY SCIENTIFIC UNIT

Permutations of $\mathbb {Z}^d$ with restricted movement

Volume 235 / 2016

Klaus Schmidt, Gabriel Strasser Studia Mathematica 235 (2016), 137-170 MSC: 37A35, 37B10, 37B50. DOI: 10.4064/sm8498-8-2016 Published online: 14 October 2016

Abstract

We investigate dynamical properties of the set of permutations of $\mathbb {Z}^d$ with restricted movement, i.e., permutations $\pi $ of $\mathbb {Z}^d$ such that $\pi (\mathbf {n})-\mathbf {n}$ lies, for every $\mathbf {n}\in \mathbb {Z}^d$, in a prescribed finite set $\mathsf {A}\subset \mathbb {Z}^d$. For $d=1$, such permutations occur, for example, in restricted orbit equivalence (cf., e.g., Boyle and Tomiyama (1998), Kammeyer and Rudolph (1997), or Rudolph (1985)), or in the calculation of determinants of certain bi-infinite multi-diagonal matrices. For $d\ge 2$ these sets of permutations provide natural classes of multidimensional shifts of finite type.

Authors

  • Klaus SchmidtMathematics Institute
    University of Vienna
    Oskar-Morgenstern-Platz 1
    A-1090 Wien, Austria
    e-mail
  • Gabriel StrasserMathematics Institute
    University of Vienna
    Oskar-Morgenstern-Platz 1
    A-1090 Wien, Austria
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image