A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Remarks on the set of norm-attaining functionals and differentiability

Volume 241 / 2018

Antonio J. Guirao, Vicente Montesinos, Vaclav Zizler Studia Mathematica 241 (2018), 71-86 MSC: Primary 46B20; Secondary 46B03, 46B26. DOI: 10.4064/sm8768-6-2017 Published online: 6 November 2017

Abstract

We use the smooth variational principle and a standard renorming to give a short direct proof of the classical Bishop–Phelps–Bollobás theorem on the density of norm-attaining functionals for weakly compactly generated Banach spaces. Then we show that a slight adjustment of a known Preiss–Zajíček differentiability argument provides a simple, useful characterization of individual norms on separable Banach spaces admitting residual sets of norm-attaining functionals in terms of Fréchet differentiability of their dual norms.

Authors

  • Antonio J. GuiraoInstituto de Matemática Pura y Aplicada

    Universitat Politècnica de València

    Camino de Vera, s/n

    46022 València, Spain
    e-mail
  • Vicente MontesinosInstituto de Matemática Pura y Aplicada

    Universitat Politècnica de València

    Camino de Vera, s/n

    46022 València, Spain
    e-mail
  • Vaclav ZizlerDepartment of Mathematics
    University of Alberta
    Central Academic Building
    Edmonton, AB, T6G 2G1, Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image