A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On finitely generated vector sublattices

Volume 245 / 2019

Lech Drewnowski, Witold Wnuk Studia Mathematica 245 (2019), 129-167 MSC: Primary 46B42, 28A05, 54H05. DOI: 10.4064/sm170524-23-12 Published online: 20 July 2018

Abstract

We investigate various questions concerning vector sublattices, $\operatorname {vlt} S$, generated by subsets $S$ of an Archimedean vector lattice $E$. We first prove a distributivity law: $\operatorname {vlt}(X;Y,Z)=\operatorname {vlt}(X,Y)+\nobreakspace {}\operatorname {vlt}(X,Z)$ if $X,Y,Z\subset E$ and $Y\perp Z$, and derive a number of its consequences. We next show that in a topological vector lattice the dimension of the sublattice generated by an analytic set is either $\le \aleph _0$ or $2^{\aleph _0}$, and that the same is true for sublattices generated by at most countable sets in arbitrary vector lattices. In a vector lattice, we characterize those sets that generate $n$-dimensional sublattices and prove that a finite set generates a finite-dimensional sublattice if so does each pair of its elements. We also show that in a uniformly complete vector lattice every principal ideal of infinite dimension contains pairs of positive elements generating $\aleph _0$- as well as $2^{\aleph _0}$-dimensional sublattices. The special case of lattices $C(K)$ is also treated in this respect. Moreover, for a compact set $K\subset \mathbb R^n$ with a nonempty interior, it is shown that the minimal number of functions in $C(K)$ or $C(K)_+$ generating a dense sublattice is $n+1$. We also prove that every (separable) Banach lattice $C(K)$ can be embedded in a discrete (separable) Banach lattice of the same type. Finally, we prove that in a discrete and $\sigma $-Dedekind complete separable $F$-lattice one can always find a pair of positive elements generating a dense sublattice, and we use that result to show that, in general, this is far from being true even in the case of discrete separable $C(K)$ lattices.

Authors

  • Lech DrewnowskiFaculty of Mathematics and Computer Science
    A. Mickiewicz University
    Umultowska 87
    61-614 Poznań, Poland
    e-mail
  • Witold WnukFaculty of Mathematics and Computer Science
    A. Mickiewicz University
    Umultowska 87
    61-614 Poznań, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image