A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On Fourier series that are universal modulo signs

Volume 249 / 2019

Martin Grigoryan, Levon Galoyan Studia Mathematica 249 (2019), 215-231 MSC: Primary 42A16; Secondary 42B05. DOI: 10.4064/sm180628-15-10 Published online: 13 May 2019

Abstract

A function $U\in L^{1}(0,2\pi)$ and a unit density subset $\mathcal{S}$ of the set of positive integers are constructed with the following property: for each measurable function $f$ on $[0,2\pi]$ one can find a sequence $\{\delta_{k}=\pm1\}_{k=1}^{\infty}$ such that \begin{equation*} \lim_{n\in \mathcal{S},\, n \rightarrow\infty}\sum_{\nu=1}^{n}\delta_{\nu} (a_{\nu}(U)\cos \nu x+b_{\nu}(U)\sin \nu x )=f(x)\quad\ \text{a.e. on } (0,2\pi), \end{equation*} where \begin{equation*} a_{\nu}(U)=\frac{1}{\pi}\int_{0}^{2\pi} U(t)\cos\nu t\,dt, \quad b_{\nu}(U)=\frac{1}{\pi}\int_{0}^{2\pi} U(t)\sin\nu t\,dt\quad \ (\nu=1, 2, \ldots) \end{equation*} are the Fourier coefficients of $U$.

Authors

  • Martin GrigoryanYerevan State University
    A. Manoogian 1
    0025 Yerevan, Armenia
    e-mail
  • Levon GaloyanYerevan State University
    A. Manoogian 1
    0025 Yerevan, Armenia
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image