A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Hardy–Littlewood theorems for trigonometric series with general monotone coefficients

Volume 250 / 2020

Mikhail Dyachenko, Askhat Mukanov, Sergey Tikhonov Studia Mathematica 250 (2020), 217-234 MSC: Primary 26A48, 42A16, 42A32, 46E30. DOI: 10.4064/sm180225-13-10 Published online: 6 August 2019

Abstract

We study trigonometric series with general monotone coefficients, i.e., satisfying $$ \sum _{k=n}^{2n}|a_k - a_{k+1}| \le {C} \sum _{k = {n/\lambda }}^{\lambda n}\frac {|a_k|}{k} , \hskip 1em n \in \mathbb {N}, $$ for some $C \gt 0$ and $\lambda \gt 1$. For such series we prove Hardy–Littlewood-type theorems for Lorentz and weighted Lebesgue spaces.

Authors

  • Mikhail DyachenkoLomonosov Moscow State University
    Vorobyevy Gory 1
    119991 Moscow, Russia
    e-mail
  • Askhat MukanovUniversitat Autónoma de Barcelona and
    Centre de Recerca Matemàtica
    Campus de Bellaterra
    08193 Bellaterra (Barcelona), Spain
    and
    Lomonosov Moscow State University
    (Kazakhstan Branch)
    Kazhimukan 11
    010010 Astana, Kazakhstan
    e-mail
  • Sergey TikhonovCentre de Recerca Matemàtica and
    Universitat Autónoma de Barcelona
    Campus de Bellaterra, Edifici C
    08193 Bellaterra (Barcelona), Spain
    and
    ICREA
    Pg. Lluís Companys 23
    08010 Barcelona, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image