A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Reflection principles for functions of Neumann and Dirichlet Laplacians on open reflection invariant subsets of $\mathbb R^{d}$

Volume 251 / 2020

Jacek Małecki, Krzysztof Stempak Studia Mathematica 251 (2020), 171-193 MSC: Primary 35K08; Secondary 47B25, 60J65. DOI: 10.4064/sm180611-10-1 Published online: 19 September 2019

Abstract

For an open subset $\Omega $ of $\mathbb R^d$, symmetric with respect to a hyperplane and with positive part $\Omega _+$, we consider the Neumann/Dirichlet Laplacians $-\Delta _{N/D,\Omega }$ and $-\Delta _{N/D,\Omega _+}$. Given a Borel function $\Phi $ on $[0,\infty )$ we apply the spectral functional calculus and consider the pairs of operators $\Phi (-\Delta _{N,\Omega })$ and $\Phi (-\Delta _{N,\Omega _+})$, or $\Phi (-\Delta _{D,\Omega })$ and $\Phi (-\Delta _{D,\Omega _+})$. We prove relations between the integral kernels for the operators in these pairs, which in the particular cases of $\Omega _+=\mathbb {R}^{d-1}\times (0,\infty )$ and $\Phi _{t}(u)=\exp (-tu)$, $u \geq 0$, $t \gt 0$, were known as reflection principles for the Neumann/Dirichlet heat kernels. These relations are then generalized to the context of symmetry with respect to a finite number of mutually orthogonal hyperplanes.

Authors

  • Jacek MałeckiWydział Matematyki
    Politechnika Wrocławska
    Wybrzeże Wyspiańskiego 27
    50-370 Wrocław, Poland
    e-mail
  • Krzysztof StempakWydział Matematyki
    Politechnika Wrocławska
    Wybrzeże Wyspiańskiego 27
    50-370 Wrocław, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image