A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Extensions of convex functions with prescribed subdifferentials

Volume 253 / 2020

Daniel Azagra, Juan Ferrera, Javier Gómez-Gil, Carlos Mudarra Studia Mathematica 253 (2020), 199-213 MSC: 26B05, 26B25, 49J52, 54C20, 54C60. DOI: 10.4064/sm181212-17-5 Published online: 21 January 2020

Abstract

Let $E$ be an arbitrary subset of a Banach space $X$, $f: E \rightarrow \mathbb {R}$ a function, and $G:E \rightrightarrows X^*$ a set-valued mapping. We give necessary and sufficient conditions on $f, G$ for the existence of a continuous convex extension $F: X \rightarrow \mathbb {R} $ of $f$ such that the subdifferential $\partial F$ of $F$ coincides with $G$ on $E.$

Authors

  • Daniel AzagraICMAT (CSIC-UAM-UC3-UCM)
    Departamento de Análisis Matemático
    y Matemática Aplicada
    Facultad Ciencias Matemáticas
    Universidad Complutense
    28040 Madrid, Spain
    e-mail
  • Juan FerreraIMI, Departamento de Análisis Matemático
    y Matemática Aplicada
    Facultad Ciencias Matemáticas
    Universidad Complutense
    28040 Madrid, Spain
    e-mail
  • Javier Gómez-GilDepartamento de Análisis Matemático
    y Matemática Aplicada
    Facultad Ciencias Matemáticas
    Universidad Complutense
    28040 Madrid, Spain
    e-mail
  • Carlos MudarraICMAT (CSIC-UAM-UC3-UCM)
    Calle Nicolás Cabrera 13-15
    28049 Madrid, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image