A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Asymmetric free spaces and canonical asymmetrizations

Volume 261 / 2021

Aris Daniilidis, Juan Matías Sepulcre, Francisco Venegas M. Studia Mathematica 261 (2021), 55-102 MSC: Primary 46B20; Secondary 39B82, 46A22. DOI: 10.4064/sm200527-24-11 Published online: 28 May 2021

Abstract

A construction analogous to that of Godefroy–Kalton for metric spaces allows one to embed isometrically, in a canonical way, every quasi-metric space $(X,d)$ in an asymmetric normed space $\mathcal {F}_a(X,d)$ (its quasi-metric free space, also called asymmetric free space or semi-Lipschitz free space). The quasi-metric free space satisfies a universal property (linearization of semi-Lipschitz functions). The (conic) dual of $\mathcal {F}_a(X,d)$ coincides with the non-linear asymmetric dual of $(X,d)$, that is, the space $\operatorname{SLip} _0(X,d)$ of semi-Lipschitz functions on $(X,d)$, vanishing at a base point. In particular, for the case of a metric space $(X,D)$, the above construction yields its usual free space. On the other hand, every metric space $(X,D)$ naturally inherits a canonical asymmetrization coming from its free space $\mathcal {F}(X)$. This gives rise to a quasi-metric space $(X,D_+)$ and an asymmetric free space $\mathcal {F}_a(X,D_+)$. The symmetrization of the latter is isomorphic to the original free space $\mathcal {F}(X)$. The results of this work are illustrated with explicit examples.

Authors

  • Aris DaniilidisDIM–CMM, UMI CNRS 2807
    FCFM, Universidad de Chile
    Beauchef 851
    Santiago, Chile
    e-mail
  • Juan Matías SepulcreDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad de Alicante
    Ap. de Correos 99
    03080 Alicante, Spain
    e-mail
  • Francisco Venegas M.DIM–CMM, UMI CNRS 2807
    FCFM, Universidad de Chile
    Beauchef 851
    Santiago, Chile
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image