A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Convolution inequalities for Besov and Triebel–Lizorkin spaces, and applications to convolution semigroups

Volume 262 / 2022

Franziska Kühn, René L. Schilling Studia Mathematica 262 (2022), 93-119 MSC: Primary 46E35; Secondary 60J76, 60G51, 35K25. DOI: 10.4064/sm210127-23-3 Published online: 12 July 2021

Abstract

We establish convolution inequalities for Besov spaces $B_{p,q}^s$ and Triebel–Lizorkin spaces $F_{p,q}^s$. As an application, we study the mapping properties of convolution semigroups, considered as operators on the function spaces $A_{p,q}^s$, $A \in \{B,F\}$. Our results apply to a wide class of convolution semigroups including the Gauß–Weierstraß semigroup, stable semigroups and heat kernels for higher-order powers of the Laplacian $(-\Delta )^m$, and we can derive various caloric smoothing estimates.

Authors

  • Franziska KühnInstitut für Mathematische Stochastik
    Fakultät Mathematik
    TU Dresden
    01062 Dresden, Germany
    e-mail
  • René L. SchillingInstitut für Mathematische Stochastik
    Fakultät Mathematik
    TU Dresden
    01062 Dresden, Germany
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image