A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Necessary condition on weights for maximal and integral operators with rough kernels

Volume 263 / 2022

Gonzalo H. Ibañez-Firnkorn, María Silvina Riveros, Raúl E. Vidal Studia Mathematica 263 (2022), 293-321 MSC: 42B20, 42B25. DOI: 10.4064/sm201023-31-3 Published online: 27 January 2022

Abstract

Let $0\leq \alpha \lt n$, $m\in \mathbb {N}$ and let $T_{\alpha ,m}$ be an integral operator given by a kernel of the form $$ K(x,y)=k_1(x-A_1y)k_2(x-A_2y)\dots k_m(x-A_my), $$ where the $A_i$ are invertible matrices and each $k_i$ satisfies a fractional size condition and a generalized fractional Hörmander condition. Ibañez-Firnkorn and Riveros (2018) proved that $T_{\alpha ,m}$ is controlled in $L^p(w)$-norms, $w\in \mathcal {A}_{\infty }$, by the sum of maximal operators $M_{A_i^{-1},\alpha }$. In this paper we present a class $\mathcal {A}_{A,p,q}$ of weights, where $A$ is an invertible matrix. These weights are appropriate for weak-type estimates of $M_{A^{-1},\alpha }$. For certain kernels $k_i$ we can characterize the weights yielding strong-type estimates of $T_{\alpha ,m}$. Also, we give a strong-type estimate using testing conditions.

Authors

  • Gonzalo H. Ibañez-FirnkornFaMAF
    Universidad Nacional de Córdoba
    CIEM (CONICET)
    5000 Córdoba, Argentina
    e-mail
  • María Silvina RiverosFaMAF
    Universidad Nacional de Córdoba
    CIEM (CONICET)
    5000 Córdoba, Argentina
    e-mail
  • Raúl E. VidalFaMAF
    Universidad Nacional de Córdoba
    CIEM (CONICET)
    5000 Córdoba, Argentina
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image