A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On optimality of constants in the Little Grothendieck Theorem

Volume 264 / 2022

Ondřej F. K. Kalenda, Antonio M. Peralta, Hermann Pfitzner Studia Mathematica 264 (2022), 263-304 MSC: 46L70, 47A30, 17C65. DOI: 10.4064/sm201125-23-8 Published online: 22 November 2021

Abstract

We explore the optimality of the constants making valid the recently established little Grothendieck inequality for JB$^*$-triples and JB$^*$-algebras. In our main result we prove that for each bounded linear operator $T$ from a JB$^*$-algebra $B$ into a complex Hilbert space $H$ and $\varepsilon \gt 0$, there is a norm-one functional $\varphi \in B^*$ such that $$ \|Tx\|\le (\sqrt {2}+\varepsilon )\|T\|\,\|x\|_\varphi \quad \ \text { for } x\in B. $$ The constant appearing in this theorem improves the best value known up to date (even for C$^*$-algebras). We also present an easy example witnessing that the constant cannot be strictly smaller than $\sqrt 2$, hence our main theorem is ‘asymptotically optimal’. For type I JBW$^*$-algebras we establish a canonical decomposition of normal functionals which may be used to prove the main result in this special case and also seems to be of an independent interest. As a tool we prove a measurable version of the Schmidt representation of compact operators on a Hilbert space.

Authors

  • Ondřej F. K. KalendaDepartment of Mathematical Analysis
    Faculty of Mathematics and Physics
    Charles University
    Sokolovská 86
    186 75 Praha 8, Czech Republic
    e-mail
  • Antonio M. PeraltaInstituto de Matemáticas de la
    Universidad de Granada (IMAG)
    Departamento de Análisis Matemático
    Facultad de Ciencias
    Universidad de Granada
    18071 Granada, Spain
    e-mail
  • Hermann PfitznerInstitut Denis Poisson
    Université d’Orléans
    Université de Tours
    Rue de Chartres, BP 6759
    F-45067 Orléans Cedex 2, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image