A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Products of synchronous games

Volume 272 / 2023

L. Mančinska, V. I. Paulsen, I. G. Todorov, A. Winter Studia Mathematica 272 (2023), 299-317 MSC: Primary 81P45; Secondary 46L89, 91A12. DOI: 10.4064/sm221201-19-4 Published online: 10 August 2023

Abstract

We show that the $^*$-algebra of the product of two synchronous games is the tensor product of the corresponding $^*$-algebras. We prove that the product game has a perfect C$^*$-strategy if and only if each of the individual games does, and that in this case the C$^*$-algebra of the product game is $^*$-isomorphic to the maximal C$^*$-tensor product of the individual C$^*$-algebras. We provide examples of synchronous games whose synchronous values are strictly supermultiplicative.

Authors

  • L. MančinskaQMATH
    Department of Mathematical Sciences
    University of Copenhagen
    København, Denmark
    e-mail
  • V. I. PaulsenInstitute for Quantum Computing
    and
    Department of Pure Mathematics
    University of Waterloo
    Waterloo, ON, Canada
    e-mail
  • I. G. TodorovSchool of Mathematical Sciences
    University of Delaware
    Newark, DE 19716, USA
    e-mail
  • A. WinterICREA and Grup d’Informació Quàntica
    Departament de Física
    Universitat Autònoma de Barcelona
    08193 Bellaterra (Barcelona), Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image