A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On vector measures with values in $\ell_\infty $

Volume 274 / 2024

S. Okada, J. Rodríguez, E. A. Sánchez-Pérez Studia Mathematica 274 (2024), 173-199 MSC: Primary 46E30; Secondary 46G10 DOI: 10.4064/sm230319-14-12 Published online: 12 February 2024

Abstract

We study some aspects of countably additive vector measures with values in $\ell _\infty $ and the Banach lattices of real-valued functions that are integrable with respect to such a vector measure. On the one hand, we prove that if $W \subseteq \ell _\infty ^*$ is a total set not containing sets equivalent to the canonical basis of $\ell _1 (\mathfrak c)$, then there is a non-countably-additive $\ell _\infty $-valued map $\nu $ defined on a $\sigma $-algebra such that the composition $x^* \circ \nu $ is countably additive for every $x^*\in W$. On the other hand, we show that a Banach lattice $E$ is separable whenever it admits a countable, positively norming set and both $E$ and $E^*$ are order continuous. As a consequence, if $\nu $ is a countably additive vector measure defined on a $\sigma $-algebra and taking values in a separable Banach space, then the space $L_1(\nu )$ is separable whenever $L_1(\nu )^*$ is order continuous.

Authors

  • S. Okada112 Marconi Crescent
    Kambah, ACT 2902, Australia
    e-mail
  • J. RodríguezDpto. de Ingeniería y Tecnología
    de Computadores
    Facultad de Informática
    Universidad de Murcia
    30100 Espinardo (Murcia), Spain
    and
    Dpto. de Matemáticas
    Escuela Técnica Superior
    de Ingenieros Industriales de Albacete
    Universidad de Castilla – La Mancha
    02071 Albacete, Spain
    e-mail
  • E. A. Sánchez-PérezInstituto Universitario
    de Matemática Pura y Aplicada
    Universitat Politècnica de València
    Camino de Vera s/n
    46022 Valencia, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image