A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Calderón–Zygmund theory with noncommuting kernels via $\mathrm H_1^c$

Volume 277 / 2024

Antonio Ismael Cano-Mármol, Éric Ricard Studia Mathematica 277 (2024), 65-97 MSC: Primary 42B20; Secondary 42B35, 46L51, 46L52 DOI: 10.4064/sm230908-9-2 Published online: 12 June 2024

Abstract

We study an alternative definition of the $\mathrm {H}_1$-space associated to a semicommutative von Neumann algebra $L_\infty (\mathbb {R}) \mathbin {\overline {\otimes }} \mathcal {M}$, first studied by Mei. We identify a “new” description for atoms in $\mathrm {H}_1$. We then explain how they can be used to study $\mathrm {H}_1^c$-$L_1$ endpoint estimates for Calderón–Zygmund operators with noncommuting kernels.

Authors

  • Antonio Ismael Cano-MármolDepartment of Mathematics
    Baylor University
    Waco, TX 76798, USA
    e-mail
  • Éric RicardLaboratoire de Mathématiques Nicolas Oresme
    UNICAEN, CRNS
    1400 Caen, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image