A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On the Lipschitz operator ideal $\mathrm{Lip}_{0}\circ \mathcal A\circ \mathrm{Lip}_{0}$

Volume 277 / 2024

Nahuel Albarracín, Pablo Turco Studia Mathematica 277 (2024), 243-269 MSC: Primary 47L20; Secondary 47H99, 47B10, 46T99 DOI: 10.4064/sm230918-19-4 Published online: 3 October 2024

Abstract

We study a systematic way of producing a Lipschitz operator ideal from a Banach linear operator ideal $\mathcal A$. For maximal and minimal operator ideals $\mathcal A$, the Lipschitz maximal hull and minimal kernel of the Lipschitz operator ideals $\mathrm{Lip}_0 \circ \mathcal A \circ \mathrm{Lip}_0$ are investigated, respectively. Using ultraproduct techniques, we obtain the Lipschitz version of a result of Kürsten and Pietsch which characterizes maximal Lipschitz operator ideals. We characterize the linear operators which belong to $\mathrm{Lip}_0\circ \mathcal A\circ \mathrm{Lip}_0$; in many cases, they are precisely those which are in $\mathcal A$. In particular, we give some cases in which a nonlinear factorization of linear operators implies a linear one, in terms of a given Banach linear operator ideal $\mathcal A$.

Authors

  • Nahuel AlbarracínIMAS – UBA – CONICET
    Pab I, Facultad de Cs. Exactas y Naturales
    Universidad de Buenos Aires
    Buenos Aires, Argentina
    e-mail
  • Pablo TurcoIMAS – UBA – CONICET
    Pab I, Facultad de Cs. Exactas y Naturales
    Universidad de Buenos Aires
    Buenos Aires, Argentina
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image