Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Dimension-free estimates for low degree functions on the Hamming cube

Volume 280 / 2025

Komla Domelevo, Polona Durcik, Valentia Fragkiadaki, Ohad Klein, Diogo Oliveira e Silva, Lenka Slavíková, Błażej Wróbel Studia Mathematica 280 (2025), 161-173 MSC: Primary 42C10; Secondary 41A17, 41A63, 47A60 DOI: 10.4064/sm240417-27-11 Published online: 31 January 2025

Abstract

The main result of this paper are dimension-free inequalities, 1 \lt p \lt \infty , for low degree scalar-valued functions on the Hamming cube. More precisely, for any p \gt 2, \varepsilon \gt 0, and \theta =\theta (\varepsilon ,p)\in (0,1) satisfying \frac{1}{p}=\frac{\theta}{p+\varepsilon}+\frac{1-\theta}{2} we obtain, for any function f\colon \{-1,1\}^n\to \mathbb C whose spectrum is bounded from above by d, the Bernstein–Markov type inequalities \|\Delta^k f\|_{p} \le C(p,\varepsilon )^k \,d^k\, \|f\|_{2}^{1-\theta }\|f\|_{p+\varepsilon }^{\theta },\quad k\in \mathbb N. Analogous inequalities are also proved for p\in (1,2) with p-\varepsilon replacing p+\varepsilon . As a corollary, if f is Boolean-valued or f\colon \{-1,1\}^n\to \{-1,0,1\}, we obtain the bounds \|\Delta^k f\|_{p} \le C(p)^k \,d^k\, \|f\|_p,\quad k\in \mathbb N. At the endpoint p=\infty we provide counterexamples for which a linear growth in d does not suffice when k=1.

We also obtain a counterpart of this result on tail spaces. Namely, for p \gt 2 we prove that any function f\colon \{-1,1\}^n\to \mathbb C whose spectrum is bounded from below by d satisfies the following upper bound on the decay of the heat semigroup: \|e^{-t\Delta }f\|_{p} \le \exp (-c(p,\varepsilon ) td) \|f\|_{2}^{1-\theta }\|f\|_{p+\varepsilon }^{\theta },\quad t \gt 0, and an analogous estimate for p\in (1,2).

The constants c(p,\varepsilon ) and C(p,\varepsilon ) depend only on p and \varepsilon ; crucially, they are independent of the dimension n.

Published in Open Access (under CC-BY license).

Authors

  • Komla DomelevoFaculty of Mathematics and Computer Science
    Institute of Mathematics
    97074 Würzburg, Germany
    e-mail
  • Polona DurcikSchmid College of Science and Technology
    Chapman University
    Orange, CA 92866, USA
    e-mail
  • Valentia FragkiadakiDepartment of Mathematics
    Texas A&M University
    College Station, TX 77843, USA
    e-mail
  • Ohad KleinSchool of Computer Science and Engineering
    Hebrew University of Jerusalem
    Jerusalem, Israel
    e-mail
  • Diogo Oliveira e SilvaCenter for Mathematical Analysis, Geometry and Dynamical Systems
    & Departamento de Matemática
    Instituto Superior Técnico
    1049-001 Lisboa, Portugal
    e-mail
  • Lenka SlavíkováDepartment of Mathematical Analysis
    Faculty of Mathematics and Physics
    Charles University
    186 75 Praha 8, Czech Republic
    e-mail
  • Błażej WróbelInstitute of Mathematics
    Polish Academy of Sciences
    00-656 Warszawa, Poland
    and
    Institute of Mathematics
    University of Wrocław
    50-384 Wrocław, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image