Uroczystość wręczenia Nagrody imienia Barbary i Jaroslava Zemánków
Serdecznie zapraszamy wszystkich na ceremonię wręczenia Nagrody im. Barbary i Jaroslava Zemánków w dziedzinie analizy funcjonalnej, która odbędzie się w ramach Kolokwium IMPAN w Instytucie Matematycznym PAN 30 października 2024 r. o godzinie 14.15 w sali 321 (III piętro) przy ulicy Śniadeckich 8 w Warszawie.
Program uroczystości:
14:15-15:15 Wykład wprowadzający Stuarta White'a (Uniwersytet w Oksfordzie)
15:15-15:45 Wręczenie nagrody oraz przerwa kawowa
15:45–16:45 Wykład laureata Christophera Schafhausera (Uniwersytet Nebraski w Lincoln)
Steszczenia wykładów:
Stuart White
Tytuł: Introduction to the classification of simple nuclear C*-algebras
Streszczenie: In this talk I'll give an introduction to simple nuclear C*-algebras and their classification. This will be illustrated by examples coming from group actions. My aim will be to describe at a high level the paradigm shift from using internal structure to classify, to obtaining internal structure from classification that Chris Schafhauser's work made possible. No prior knowledge of operator algebras will be assumed.
Christopher Schafhauser
Tytuł: Lifting problems in C*-algebras and applications
Streszczenie: A classical problem of Halmos asks which essentially normal operators (those commuting with their adjoint modulo a compact operator) on Hilbert space are compact perturbations of normal operators (those commuting with their adjoint). A complete solution was obtained by Brown, Douglas, and Fillmore in the early 70s, and their solution led to the introduction of algebraic topological methods in operator algebras. In particular, for a compact metric space X, they considered all embeddings of C(X) into the quotient B(H)/K(H) of bounded operators on a Hilbert space modulo the compact operators and showed that homotopy classes of such embeddings form an abelian group K_1(X), which is the degree one term for a generalized homology theory dual to topological K-theory. Building on this, Kasparov developed a much more general extension theory, studying lifting problems along more general quotient maps up to a stabilized notion of homotopy. I will discuss some recent progress in `non-stable’ extension theory with applications to embedding problems and classification problems for simple nuclear C*-algebras.