JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Differentiability of excessive functions of one-dimensional diffusions and the principle of smooth fit

Tom 104 / 2015

Paavo Salminen, Bao Quoc Ta Banach Center Publications 104 (2015), 181-199 MSC: Primary 60J60, 60G40, 62L15; Secondary 31C05. DOI: 10.4064/bc104-0-10

Streszczenie

The principle of smooth fit is probably the most used tool to find solutions to optimal stopping problems of one-dimensional diffusions. It is important, e.g., in financial mathematical applications to understand in which kind of models and problems smooth fit can fail. In this paper we connect—in case of one-dimensional diffusions—the validity of smooth fit and the differentiability of excessive functions. The basic tool to derive the results is the representation theory of excessive functions; in particular, the Riesz and Martin representations. It is seen that the differentiability may not hold in case the speed measure of the diffusion or the representing measure of the excessive function has atoms. As an example, we study optimal stopping of sticky Brownian motion. It is known that the validity of the smooth fit in this case depends on the value of the discounting parameter (when the other parameters are fixed). We decompose the size of the jump in the derivative of the value function into two factors. The first one is due to the atom of the representing measure and the second one due to the atom of the speed measure.

Autorzy

  • Paavo SalminenÅbo Akademi, Faculty of Science and Engineering
    FIN-20500 Åbo, Finland
    e-mail
  • Bao Quoc TaÅbo Akademi, Faculty of Science and Engineering
    FIN-20500 Åbo, Finland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek